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a b s t r a c t

A new method is proposed for calculating the dynamic elastic constants of an isotropic

plate from measurements of the impact-echo resonance and Rayleigh wave velocity.

Poisson’s ratio is shown to be a single-valued function of the ratio between thickness

frequency and Rayleigh wave velocity. This dependence is derived theoretically from

Lamb mode. A finite element model is developed to determine how this frequency

varies with Poisson’s ratio. The results obtained by modal analysis and the power-

spectral density technique are in good agreement with those calculated as the solution

of the S1 Lamb mode equation. The method is verified by impact-echo tests on concrete

and methacrylate plates. A laser interferometer is used to detect the vibration.

Thickness frequencies are accurately identified by applying the multicross-spectral

density to the signals detected at several points close to the impact point. In a separate

experiment, Rayleigh waves are generated by the mediator technique. The wave

velocities are determined from the arrival times of the surface wave at several points.

Finally, the main sources of uncertainty are evaluated.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic elastic constants are usually determined by measuring ultrasonic wave velocities or resonance frequencies in
specimens of a convenient geometric shape, such as a cylinder or parallelepiped [1–3]. In general, the equations used to
calculate elastic constants from wave velocities are valid for homogeneous and linearly elastic materials. Although
concrete materials are not homogeneous, these equations can still be used if the wavelength of the elastic wave is much
longer than the aggregates.

Several approaches have been proposed for calculating the dynamic elastic moduli of concrete materials from wave
velocities. Quixian and Bungey [4] placed two conventional P-wave transducers on the surface of a sample to measure both
longitudinal and Rayleigh wave velocities from the arrival of the wavefront. Wu et al. [5] measured the same velocities
using transient elastic waves generated by a steel ball impact. In a later work [6], the procedure was improved and applied
to a concrete plate using horizontally polarized transducers. Popovics et al. [7] presented a very accurate method of
determining both wave velocities simultaneously from one-sided measurements. The arrival time of the first disturbance is
corrected for pulse dispersion, enabling a more accurate determination of the P-wave arrival time. Measurements of the
Rayleigh wave velocity and the normal-to-longitudinal amplitude ratio [8] can also be used as input data in the calculation
of elastic constants. Surface waves are more easily identified than bulk waves, since they propagate with less attenuation.
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Another non-destructive technique, mainly used in the evaluation of concrete and masonry structures, is the impact-
echo method [9]. Transient stress waves are generated by a short-duration mechanical impact, and a transducer located
close to the impact point is used to detect the wavefront. After transforming the transducer signal into the frequency
domain, significant peaks in the spectrum can be used to evaluate the integrity of the structure, determine the location of
flaws, or measure its thickness [10,11]. Undesirable peaks in the spectrum due to interference from reflected waves can be
reduced by various signal processing techniques, for example by calculating the multicross-spectral density [12]. In plate-
like structures, the impact-echo response is dominated by reflections between the boundary surfaces, so the frequency
spectrum will have a strong peak at the so-called thickness frequency ðft1Þ. The fundamental equation describing impact-
echo response in a solid plate [9] is

ft1 ¼
bvP

2h
; (1)

where vP corresponds to the velocity of the P-wave, h denotes the plate thickness, and b is a geometric correction factor
equal to 0.96 for a concrete plate. Gibson and Popovics [13] established the theoretical basis for the correction factor b.
Using guided wave theory, they proved that the impact-echo resonance corresponds to the point of zero group velocity at
the frequency minimum of the first-order symmetric (S1) Lamb mode.

This paper investigates a different application of the impact-echo method: the thickness frequency is used to calculate
the elastic constants of an isotropic plate. While other studies refer mainly to concrete, this paper deals also with other
materials with different values of Poisson’s ratio. To obtain an accurate thickness frequency, the high-amplitude Rayleigh
wave generated by the impact should be removed [14]. However, before filtering out the Rayleigh wave, the detected
signals at two points could be used to obtain the Rayleigh wave velocity. Therefore, in a single test with two detectors, both
the thickness frequency and the Rayleigh wave velocity can be obtained.

In sum, this work proposes a new method for calculating the elastic constants of a plate from measurements of the
thickness frequency and Rayleigh wave velocity. The signals detected in an impact-echo test are processed using the
multicross-spectral density technique, in order to more accurately determine the thickness frequency. The Rayleigh wave
velocity is obtained in a different experiment from the arrival times of a pulse at several aligned points. A broad-bandwidth
laser interferometer is used to detect the vibrations, requiring no mechanical interaction with the sample. The method is
experimentally tested and the main sources of uncertainty are evaluated.

2. Theoretical background

The classic problem of Lamb wave propagation in a traction-free, homogeneous and isotropic plate has been addressed
by many researchers [15,16]. The solutions are a combination of travelling waves along the direction of the plate and
standing waves in the transverse direction. The case of Lamb wave resonance at the minimum frequency of the first-order
symmetric mode (S1) has been shown [13] to correspond to the impact-echo resonance. Since at this frequency the group
velocity is zero, this mode tends to dominate the transient response of a plate to a mechanical impact when the detector is
located near the impact area.

For the sake of simplicity in the calculation, let us define the dimensionless frequency O and the dimensionless wave
number x as

O¼
2hf

vS
; x¼

hk

p ; (2)

where f denotes the frequency in Hz, vS is the shear wave velocity, and k is the wave number. The equation relating the
dimensionless frequency to the dimensionless wave number for symmetric Lamb modes is [15]

0¼
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2
�x2
Þ

q
� p=2

� �
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: (3)

The material constant k¼ vP=vS, the ratio of longitudinal velocity vP to shear velocity vS, may be expressed in terms of
Poisson’s ratio n as

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�nÞ
1�2n

r
: (4)

The solution to Eq. (3) gives the dispersion relation for symmetric modes, but can only be obtained by numerical methods.
In this work, Maple ðRÞ is used to find the roots of Eq. (3). Fig. 1 shows the dispersion curves of the three lowest symmetric
modes (S0, S1, S2), assuming a Poisson’s ratio of 0.2. Note that the zero group velocity point lies at the frequency minimum
of the first-order symmetric Lamb mode S1. The corresponding dimensionless frequency is denoted by OS1 min. To
investigate the dependence of such modes on Poisson’s ratio, we created plots similar to Fig. 1 for Poisson’s ratios ranging
from 0.10 to 0.44. Fig. 2 shows the results for mode S1. The relationship between OS1 min and n is accurately obtained from
the minima shown in Fig. 2 (solution to Eq. (3)), and is plotted in Fig. 3 as the curve labeled analytical. According to the
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Fig. 1. Dispersion curves for the three lowest-order symmetrical Lamb waves, for a Poisson’s ratio of 0.2.

Fig. 2. Dispersion curves for the S1 Lamb wave only, for various Poisson’s ratios from 0.10 to 0.44.
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definition of O and the relationship between OS1 min and the thickness frequency ft1, OS1 min can be expressed as
OS1 min ¼ 2hf t1=vS.

The exact value of the ratio between Rayleigh wave velocities vR and vS, Z¼ ðvR=vSÞ
2, can be calculated from the

following equation:

Z3�8Z2þ8Z 3�2
v2

S

v2
P

 !
�16 1�

v2
S

v2
P

 !
¼ 0: (5)
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Fig. 3. Minimum frequency OS1 min of the first-order symmetric Lamb mode in terms of Poisson’s ratio. The results are obtained by solving the analytical

expression for the S1 Lamb mode (analytical), by modal analysis of a finite element model (FEM), by identifying the thickness frequency peak in the power

spectral density (PSD), and by combining several independent PSDs into the multicross-spectral density (MCSD).
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Since the ratio vP=vS depends only on n, so does the ratio vR=vS, i.e., vR=vS ¼ f ðnÞ. A good approximation is given by [15]

vR

vS
�

0:862þ1:14n
1þn : (6)

From the expressions for OS1 min and vR=vS ¼ f ðnÞ, and the approximate solution to Eq. (5), it follows that

OS1 min ¼
2hf t1

vS
¼

2hf t1

vR
f ðnÞ � 2hf t1

vR

0:862þ1:14n
1þn

: (7)

OS1 min is indeed a function of n, as shown in Fig. 3. Therefore, the relationship between hf t1=vR and Poisson’s ratio can be
established from Eq. (7). To increase the accuracy, the function vR=vS ¼ f ðnÞ (the solution to Eq. (5)) is also accurately
determined and will be included in the calculations performed in Section 4.

As mentioned earlier, the impact-echo method is based on the detection of the thickness frequency ft1 ¼ bðvP=2hÞ.
Gibson and Popovics [13] showed that the empirical correction factor b is dependent on Poisson’s ratio. Their study
included plates with n values ranging from 0.15 to 0.26.

An analytical expression giving the dependence of b on n can be obtained in a straightforward manner. From the
definition of OS1 min and Eq. (4), the thickness frequency takes the form

ft1 ¼OS1 minðnÞ
vS

2h
¼OS1 minðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2n

2ð1�nÞ

s
vP

2h
: (8)

It follows from Eqs. (8) and (1) that the coefficient b can be analytically expressed as

bðnÞ ¼OS1 minðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2n

2ð1�nÞ

s
: (9)

This equation yields values of b in terms of n on the condition that OS1 minðnÞ is known. Fig. 4 plots this relationship as the
curve labeled analytical.

3. FEM analysis

The purpose of this section is to study by FEM analysis the dependence of the zero group velocity (ZGV) frequency in the
first-order symmetric mode, OS1 min, on n for real (non-infinite) plates. The frequency associated with the thickness is
calculated by modal analysis and by the power spectral density technique. The two results are compared to one another
and to the analytical solution obtained in Section 2 for infinite plates. The range of n for which the thickness frequency
dominates the frequency response is also determined.

Modeling is performed with the finite element model software Ansys ðRÞ 11.0 and a Pentium ðRÞ 4 computer. In order to
simulate a 3D plate with sufficient mesh refinement and a feasible computation time, we create a 2D model using
rectangular quadratic axisymmetric elements.

Modal analysis obtains the frequency of vibration from the deformed shape corresponding to the thickness mode [13].
Since the generated wave amplitude increases greatly as the ZGV frequency is approached, the power spectral density
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Fig. 4. The geometrical coefficient b used in the impact-echo method versus Poisson’s ratio. b is calculated from the values of OS1 min.
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(PSD) is also proposed here to determine this frequency in a real plate. An impact is applied to the surface of the plate and
the PSD response is calculated using the Ansys RPSD command. While modal analysis of the FEM requires the shape to be
known, the PSD technique yields a direct and accurate estimate of the ZGV frequency without previous identification of the
corresponding mode shape. The power spectral density analysis also determines the degree of excitation of the OS1 min

mode in a plate subjected to an impact.
To improve the results, the PSD signal, PiðoÞ, is recorded at various distances from the impact point, all points being

within the area of relevance for an impact-echo test. Then they are combined to obtain the multicross-spectral density
(MCSD) [12]. The MCSD signal SnðoÞ can be written as

SnðoÞ ¼
Yn

i ¼ 1

PiðoÞ: (10)

It is expected that only frequencies with high amplitudes in all spectra (the thickness frequency) will have a significant
amplitude in Sn. The ZGV frequency is accurately calculated from the result given by Eq. (10) for the thickness frequency,
OS1 min ¼ 2hf t1=vS.

The plate is modeled as having finite lateral dimensions and no support. Its material properties are assumed to be
homogeneous and linear-elastic, which is the case for low-strain, low-frequency deformations in concrete. Various
geometries L=h are studied, where L is the lateral dimension (the radius of the plate) and h is its thickness. A convergence
analysis is carried out to accurately determine the grid spacing required when this ratio is large: in practice, the thickness
frequency stabilizes once the element size has decreased to Dx¼ 0:6h=20.

We also determine the minimum admissible value of L=h. A FEM with E¼ 40 GPa, n¼ 0:2, r¼ 2400 kg m�3, and
L¼ 2:5 m is used to study the dependence of ZGV frequency on thickness values ranging from h¼ 0:1 to 0:6 m. Optimum
results are obtained for L=h46; in this range the dimensionless ZGV frequency is independent of the thickness. Its value is
OS1 min ¼ 1:558870:0013, similar to the analytical result (for a plate of infinite length) of OS1 min ¼ 1:5563.

The dependence of ZGV frequency on Poisson’s ratio is studied using a circular plate with E¼ 40 GPa, r¼ 2400 kg m�3,
L¼ 2:5 m, and h¼ 0:15 m. Poisson’s ratio is varied from 0.10 to 0.38, with an interval of 0.02. (For values of n outside this
interval, the thickness frequency is difficult to identify.) In this analysis OS1 min is calculated by three methods: modal
analysis (deformed shape), the Ansys-PSD, and the MCSD (Eq. (10)). An example of the deformed shape corresponding to
the thickness frequency is shown in Fig. 5(a), for n¼ 0:24. The mode is a symmetric resonance with large deformations in
the central area, the zone of relevance to the impact-echo test. Figs. 5(b) and (c) show the PSD and the MCSD results,
respectively. In the latter, only one peak appears in the spectrum. The frequencies obtained are f ¼ 14 004 Hz from the
deformed shape study, f ¼ 14 020 Hz from the PSD, and f ¼ 14 047 Hz from the MCSD. The corresponding values of OS1 min

differ from the analytical solution by less than 0.38 percent. Fig. 3 shows the variation of OS1 min with n for all three
methods, including the analytical solution for comparison.

Fig. 4 shows the variation of b with n. This coefficient decreases with Poisson’s ratio, an effect which is especially
significant for large values of n. The dimensionless ZGV frequency, on the other hand, increases with Poisson’s ratio.
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Fig. 5. Results obtained by FEM analysis for the zero-group-velocity (ZGV) frequency of the first-order symmetric mode: (a) the mode shape, (b) the

power spectral density (PSD), and (c) the multicross-spectral density (MCSD).
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The values obtained for OS1 min under all three methods are similar to the analytical solution, as shown in Fig. 3. These
numerical results prove that the analytical solution for the ZGV frequency of an infinite plate can correctly characterize real
(non-infinite) plates. Our PSD analysis shows that the thickness mode is most easily excited in the interval 0:10ono0:38.
For other values of n, the thickness frequency does not dominate the spectrum and is therefore difficult to identify.
Characterization of materials based on the results of an impact-echo test can therefore be extended to other materials,
provided their Poisson’s ratios lie within the aforementioned interval.
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4. Method for calculation of the elastic constants

The theoretical study of Section 2 shows that OS1 min is a single-valued function of n. Conversely, a given value of OS1 min

determines n for the plate under examination. In light of Eq. (7), and given that the magnitudes h, ft1, and vR can be
measured, we introduce the dimensionless parameter W ¼ hf t1=vR. W can be expressed in terms of Poisson’s ratio as

W ¼
hf t1

vR
¼

OS1 minðnÞ
2

1

f ðnÞ
�

OS1 minðnÞ
2

1þn
0:862þ1:14n

: (11)

Fig. 6 plots W versus n, which is also a single-valued function. The second column of Table 1 provides the values of W,
which are calculated from OS1 min and f ðnÞ. The former is obtained in Section 2 from the solution of Eq. (3) for the frequency
minimum of the first-order symmetric Lamb mode; the latter is given by Eq. (5) for each value of n. Note that although the
approximation of Eq. (11) is accurate enough for many applications, here the values of f ðnÞ are obtained by solving Eq. (5)
instead. If h, ft1 and vR are all known, W can be calculated and n can be determined by interpolating the values in Table 1.

In order to fully characterize the elastic behavior of an isotropic plate, either Young’s modulus or the shear modulus
should also be calculated. Young’s modulus E may be obtained by combining Eq. (1), the well-known relation of vP to n, and
the dependence of b on n established in Section 2:

E¼
2hf t1

b

� �2 r ð1þnÞð1�2nÞ
1�n ; (12)

where r is the density of the material. The b values associated with each n, calculated from Eq. (9), are also listed in Table 1.
Nominally, Eq. (12) requires Poisson’s ratio. However, since Table 1 shows the dependence of both n and b on W, Eq. (12)
can be expressed in terms of h, ft1, r, and W. Therefore, n is not needed to obtain E; either elastic constant can be calculated
independently of the other.

The above study shows that the elastic constants of an isotropic plate can be calculated from measurements of the
Rayleigh wave velocity and the thickness frequency. The thickness of the plate should be large compared with the
wavelength of the surface wave. The thickness frequency is determined by an impact-echo test. The Rayleigh wave velocity
could be determined in the same test by using two detectors. If only one detector is available, then two separate tests are
required. The surface waves can be generated and detected by other means such as the wedge technique, a periodic array
of transducers, and the mediator technique [17].

The quotient W and Table 1 can provide a value of n through simple linear interpolation. Analogously, the value of b can
be calculated from Table 1 provided either n or W is known. Finally, Eq. (12) yields Young’s modulus. Note that the density
and thickness of the plate must be known.

5. Experimental procedure

In this section, we apply the methodology proposed above to isotropic plates of various materials. A laser
interferometer is used to detect the vibration. Each sample is subjected to two experiments: one determines the
thickness frequency by the impact-echo method, and the other generates Rayleigh waves by the ‘‘mediator technique’’ [17]
to measure vR.

Fig. 7(a) sketches the points of impact and detection for the first experiment. Elastic waves are generated by the brief
impact of a steel ball moving perpendicular to the plate at its center. The steel ball is 3:20 mm in diameter. We estimate the
Fig. 6. The dimensionless parameter W ¼ hf t1=vR in terms of Poisson’s ratio.
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Table 1

Values of the dimensionless parameter W and coefficient b in terms of Poisson’s ratio, as obtained from Lamb wave resonance OS1 min (analytical solution).

n W b jDn=DWj jDb=Dnj

0.05 0.7946 0.9666 4.3478 0.1

0.06 0.7969 0.9656 4.1667 0.09

0.07 0.7993 0.9647 3.7037 0.09

0.08 0.8020 0.9638 3.5714 0.09

0.09 0.8048 0.9629 3.1250 0.08

0.1 0.8080 0.9621 3.0303 0.08

0.11 0.8113 0.9613 2.7778 0.08

0.12 0.8149 0.9605 2.5641 0.09

0.13 0.8188 0.9596 2.4390 0.08

0.14 0.8229 0.9588 2.2727 0.08

0.15 0.8273 0.9580 2.0833 0.09

0.16 0.8321 0.9571 2.0000 0.09

0.17 0.8371 0.9562 1.8519 0.1

0.18 0.8425 0.9552 1.7544 0.1

0.19 0.8482 0.9542 1.6667 0.12

0.2 0.8542 0.9530 1.5625 0.12

0.21 0.8606 0.9518 1.4706 0.14

0.22 0.8674 0.9504 1.3889 0.15

0.23 0.8746 0.9489 1.2987 0.17

0.24 0.8823 0.9472 1.2500 0.2

0.25 0.8903 0.9452 1.1765 0.23

0.26 0.8988 0.9429 1.1236 0.27

0.27 0.9077 0.9402 1.0638 0.31

0.28 0.9171 0.9371 1.0204 0.37

0.29 0.9269 0.9334 0.9804 0.43

0.3 0.9371 0.9291 0.9434 0.52

0.31 0.9477 0.9239 0.9174 0.61

0.32 0.9586 0.9178 0.9009 0.73

0.33 0.9697 0.9105 0.8929 0.88

0.34 0.9809 0.9017 0.9009 1.05

0.35 0.9920 0.8912 0.9091 1.26

0.36 1.0030 0.8786 0.9709 1.51

0.37 1.0133 0.8635 1.0309 1.79

0.38 1.0230 0.8456 0.9709 2.12

0.39 1.0333 0.8244 1.6949 2.49

0.4 1.0392 0.7995 1.6393 2.9

0.41 1.0453 0.7705 2.2222 3.36

0.42 1.0498 0.7369 3.4483 3.87

0.43 1.0527 0.6982 7.6923 4.43

The slopes jDn=DWj and jDb=Dnj are also listed.

Fig. 7. (a) Experimental layout to determine the thickness frequency by the impact-echo method. (b) Sketch illustrating the mediator technique of

generating surface waves and the detection points.
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impact duration to be 13:7ms, and expect to detect thickness frequencies up to 90 kHz. A laser Doppler vibrometer (Polytec
OFV-5000) with a VD-06 velocity decoder is used to detect the out-of-plane velocity component at several locations. The
laser interferometer has a frequency range of 02350 kHz and a velocity range of 2 mm s�1=V. No surface preparation is
required. The detection points are arranged at various distances from the impact point, from 0:2 h to 0:8 h. The signals are
digitized by an oscilloscope (Tektronik TDS5032B).
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The fast Fourier transform (FFT) of the detected signal is expected to show a significant peak at the thickness frequency.
However, the spectrum also contains undesirable peaks associated with low-frequency natural modes and interference
from reflected waves. Some of these have very large amplitudes, and their presence in the spectrum would make the
thickness frequency peak more difficult to identify. The duration of the recorded signal should be long enough to detect
multiple reflections between the upper and lower surfaces of the plate, but short enough to prevent the detection of
vibration modes whose amplitudes are large relative to the thickness frequency. Thus, in order to determine the thickness
frequency with great accuracy, the recorded signals are first processed according to a procedure described in [12]. Firstly, a
rectangular window is applied to remove Rayleigh waves from the signal and increase the signal-to-noise ratio of the
frequency spectrum. Secondly, the multicross-spectral density is calculated. This technique combines the spectra of signals
recorded at various locations, reducing the amplitude of undesired peaks associated with interference between the various
waves. The procedure is similar to that described in Section 3 for the PSD response (Eq. (10)).

The second experiment measures the Rayleigh wave velocity. Fig. 7(b) illustrates the mediator technique of generating
surface waves [17], and also indicates the detection points. A P-wave transducer (0.5 MHz) is set on the sloping surface of a
wedge at the critical angle a which allows a Rayleigh wave to be generated on the surface of the mediator M. The generated
surface wave is optimal when the angle of incidence is a¼ sin�1

ðvPW=vRMÞ, where vPW is the P-wave velocity in the wedge
and vRM is the Rayleigh wave velocity in the mediator. Since vPW must be smaller than vRM , the wedge is made of
methacrylate ðvP ¼ 2730 m s�1Þ and the mediator is made of aluminium ðvR ¼ 2888 m s�1Þ. The angle a is therefore 711. The
generated wave travels first along the wedge, then along the mediator, then impinges on the plate. The advantage of this
technique is that a sharp-tipped mediator can generate Rayleigh waves even in materials with low surface wave velocities.
The same method is applied in all our experiments, regardless of the material of the sample. The amplitudes of the
generated Rayleigh waves are very low, but sufficiently large to detect arrival times (albeit with difficulty). The Rayleigh
waves are detected by means of a laser speckle heterodyne interferometer (Ultra-Optec OP35-I/O) [18]. Both normal and
longitudinal components of the displacement can be detected at the same point, in sequential measurements.

In a preliminary experiment Rayleigh waves were generated on the surface of an aluminium plate, first by the wedge
technique and then by the mediator technique. For the first measurement, the methacrylate wedge was directly adhered to
the aluminium sample. The normal and longitudinal components of the Rayleigh wave were detected with the I/O
interferometer. In the second measurement, only the normal component of the surface wave could be detected. The
velocity of the wave was calculated from arrival times in both cases. The results obtained for the velocity were in good
agreement. This experiment shows that Rayleigh waves are mainly generated using the mediator technique. The spot of
light on the surface is about 20mm in diameter. The wavelength of the Rayleigh wave should be large compared to the
diameter of the illuminated zone, so that the detection can be regarded as ‘‘point-like’’.

As shown in Fig. 7(b), we detected the normal component of the Rayleigh wave with the interferometer at several
aligned points. The arrival time of the surface wave is taken as the arrival time of the first peak. The set of times ti taken for
the wave to arrive at coordinates xi are used in a linear regression to determine the velocity. The signal detected at each
point is averaged to improve the signal-to-noise ratio.

6. Experimental results

The proposed method is applied to sample plates of two different materials: methacrylate and concrete. The sample
dimensions are detailed in Table 2. The width-to-thickness ratios are approximately 15 and 7 for methacrylate and
concrete, respectively. The concrete sample was mixed and cast in our laboratory.

The signals generated by the impact are detected at several points on the surface, at various distances from the impact
point. These distances range from 5 to 20 mm for the methacrylate plate, and from 16 to 32 mm for the concrete sample.
The sampling intervals used to record the displacement waveform are 400 and 800 ns for methacrylate and concrete,
respectively. As an example, Fig. 8 shows the displacement waveform recorded by the laser interferometer at a single point
on the methacrylate sample. The plot shows a Rayleigh wave with large amplitude and multiple reflections between the
parallel surfaces of the plate. As mentioned in Section 5, a rectangular window of 4096 datapoints is applied to remove the
Rayleigh wave. The start of the window is delayed at each point by the time required for the Rayleigh wave to travel to that
point. We then apply the fast Fourier transform (FFT) to each time series. With 4096 points, the resolutions of the
frequency spectra are 610 Hz for the methacrylate sample and 305 Hz for the concrete sample.

Figs. 9 and 10 show the multicross-spectral density functions obtained for the methacrylate and concrete samples,
respectively. The energy of the impact is too low to excite flexural modes. For the concrete sample, a single major peak
Table 2
Geometrical dimensions of the methacrylate and concrete plates: length l, width w, thickness h, and density r.

Sample l (cm) w (cm) h (cm) r ðkg m�3Þ ft1 (Hz) vR ðm s�1Þ

Methacrylate 40.0 40.0 2.520 1182 49088 1286

Concrete 60.0 60.0 8.1 2191 20214 1905

The experimental results for the impact-echo resonance ft1 and Rayleigh wave velocity vR of the plates are also included.
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Fig. 8. Displacement waveform from an impact-echo test at a point on the methacrylate plate.
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Fig. 9. Multicross-spectral density for the methacrylate sample.
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appears at 20 141 Hz. The methacrylate sample has a more complicated MCSD, with a large peak at 48 828 Hz accompanied
by lateral peaks at 48 217 and 49 438 Hz. The actual thickness frequency is therefore expected to lie between these values.
The resolution cannot be improved further; a longer duration would introduce high-amplitude natural frequencies into the
spectrum, decreasing the signal-to-noise ratio of the thickness frequency peaks. The thickness frequencies ft1 reported in
Table 2 are weighted averages of the frequency at maximum amplitude and the frequencies of the two adjacent values on
either side of that peak.

Table 2 also reports Rayleigh wave velocities obtained following the methodology described in Section 5. The sample is
mounted on a translation stage with a precision of 0:01 mm. The arrival time of the wave at several positions is measured
with the I/O interferometer. The velocity is the slope of the least-squares linear fit to the set of distances x (mm) and arrival
times t ðmsÞ. For the methacrylate plate, the best-fit line through four points is x¼ 1285:7t (the correlation coefficient is
r¼ 0:9999). Fig. 11 shows the normal displacements detected at a single point. The size of the concrete sample makes it
impossible to use the translation stage, so the I/O interferometer cannot be used to detect Rayleigh waves in this
experiment. Instead, the laser vibrometer is mounted on the translation stage and used to detect the arrival of the wave at
three locations. The resulting slope is 1905 m s�1 ðr¼ 1Þ.

Table 3 shows the n and E values obtained by applying the proposed method to the samples. From W ¼ hf t1=vR, linear
interpolations of Table 1 give Poisson’s ratio n and b. Note that b can also be calculated from the value of n, using the
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Fig. 10. Multicross-spectral density for the concrete sample.

Fig. 11. Normal component of the Rayleigh wave at a point on the methacrylate sample.

Table 3

Values of the dimensionless parameter W and coefficient b, along with the calculated values of Poisson’s ratio n and Young’s modulus E for the samples

tested.

Sample W n b E (GPa)

Methacrylate 0.9619 0.3230 0.9156 5.97

Concrete 0.8595 0.2083 0.9520 23.08
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function bðnÞ shown in Table 1. Eq. (12) then yields the value of E. A graphical solution can be found from Figs. 4 and 6; no
tables are required.

For purposes of comparison, the dynamic elastic constants of these samples are calculated based on measurements of
the bulk wave velocities vP and vS. Conventional ultrasonic measurements are performed through the thickness of the
samples to obtain these velocities. For the methacrylate sample, this method gives E and n values of 6.00 GPa and 0.3237,
respectively. The differences between these results and those shown in Table 3 are 0.2 and 0.5 percent, respectively. For the
concrete sample, the bulk velocities estimated give E¼ 26:11 GPa and n¼ 0:1982. Compared to our method, the relative
differences are 10.7 and 5 percent, respectively.
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7. Estimation of the uncertainties of the method

The uncertainty U of an indirect measurement is estimated by taking the partial derivative of the function relating the
result y to the directly measurements xi [19]: Uy ¼

P
jqy=qxijUxi

. Here we assume that the uncertainty in direct
measurements Uxi

is only due to the lack of resolution of the apparatus. The uncertainties obtained for n and E are not
based on a statistical analysis of repeated experiments, so should be considered minimal estimates.

The uncertainty in the dimensionless parameter W, UW , is calculated from those of the thickness ðUhÞ, the frequency
ðUft1
Þ, and an indirect measurement of vR ðUvR

Þ. UW can be written as

UW ¼
qW

qh

����
����Uhþ

qW

qft1

����
����Uft1
þ

qW

qvR

����
����UvR

: (13)

The thickness of the methacrylate sample is measured with a caliper ðUh ¼ 0:05 mmÞ; the concrete is measured with a ruler
ðUh ¼ 1 mmÞ. Based on the sampling frequency and the number of data points, the uncertainties of frequencies obtained in
the FFT analysis are Uft1

¼ 610 Hz for the methacrylate sample and Uft1
¼ 305 Hz for the concrete plate. The uncertainty of

the Rayleigh wave velocity is estimated by applying the same methodology, propagating the uncertainties on the distances
and the elapsed times. As a translational mechanism is used to adjust the sample, Ux ¼ 0:01 mm. In the measurement of the
time elapsed, it is estimated that Ut ¼ 0:01ms.

Poisson’s ratio n is calculated from its dependence on W, which is accurately established in Table 1. Therefore, the
uncertainty of n can be expressed as

Un ¼
qn
qW

����
����UW �

Dn
DW

����
����UW : (14)

In order to calculate n with high precision, the partial derivative of n with respect to W should be as small as possible.
However, this derivative depends on the value of n. The fourth column of Table 1 lists the absolute value of the slope
jDn=DWj. The smallest (approximately constant) slopes occur in the interval 0:27ono0:38. For values of n smaller than
0.27, the slope increases gradually down to a Poisson’s ratio of approximately 0.14, below which the variation is more
pronounced. For Poisson’s ratios greater than approximately 0.42, the slope increases rapidly, indicating that any
calculation of Poisson’s ratio in this range will be highly uncertain.

From Eq. (12), it follows that the uncertainty of E is given by

UE ¼
qE

qh

����
����Uhþ

qE

qft1

����
����Uft1
þ

qE

qb

����
����Ubþ

qE

qr

����
����Urþ

qE

qn

����
����Un; (15)

where b is calculated by linear interpolation in Table 1 and Ub is determined by the same procedure followed for Un. By
taking b as a function of n, Ub can be estimated as Ub � jDb=DnjUn. The fifth column of Table 1 lists results for the slope
jDb=Dnj. The slopes are small and roughly constant for values of n smaller than 0.2. As with Poisson’s ratio, the slope
increases sharply for Poisson’s ratios greater than approximately 0.4. In this range the uncertainties are large, and the
proposed method is not recommended.

Finally, after substituting UW given by Eq. (13) into Eq. (14), we obtain the overall uncertainties on our parameters of
interest. For the methacrylate sample, we find Un ¼ 0:0017þ0:0108þ0:0024¼ 0:0149. The first term corresponds to Uh, the
second to Uft1, and the third to UvR

. The relative uncertainty is Un=n¼ 4:6 percent. Most of this comes from Uft1, which is a
relative uncertainty of (72.5 percent). To improve the precision of the measurement, this uncertainty must be decreased.
For the concrete sample, Un ¼ 0:0166þ0:0203þ0:0062¼ 0:0431 and the relative uncertainty is 20.7 percent. The main
contribution to the uncertainty on n is also Uft1 (47 percent). A larger value of Un is obtained for the concrete sample
because this measurement is less sensitive to uncertainty in the thickness of the plate.

When Eq. (15) is applied to the indirect measurement of UE, the result for the methacrylate sample is
UE ¼ 0:02þ0:15þ0:14þ0:02þ0:30¼ 0:63 GPa, and the relative uncertainty is UE=E¼ 10:6 percent. The uncertainty in
the measurement of n accounts for 48 percent of UE, while the thickness frequency accounts for 24 percent. The
measurements of both n and E can thus be improved by decreasing Uft1

, i.e., by modifying the sampling parameters.
For the concrete sample, UE ¼ 0:57þ0:70þ0:25þ0:05þ1:33¼ 2:90 GPa, the relative uncertainty being 12.6 percent. For

this sample, a decrease in both Un and UE can be accomplished by measuring the thickness with greater sensitivity and
decreasing Uft1.

If the uncertainty of ft1 were improved by prolonging the recording time, the amplitude of the natural frequencies
would increase, possibly preventing detection of the thickness frequency peak. The solution would be to find a means of
filtering out these low frequencies.

These uncertainty estimates are only valid for the specific materials and experimental set-up used in this research, but
it is straightforward to extend the procedure to materials with similar values of n.

8. Conclusions

This paper has described a new method for calculating the dynamic elastic constants of a finite plate. Poisson’s ratio can
be computed as a simple quotient of the impact-echo resonance and Rayleigh wave velocity, provided the thickness of the
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plate is known. The dependence of Poisson’s ratio on these two factors was derived independently from the S1 Lamb mode
equation and a FEM analysis, the results being in good agreement. The geometric correction factor b, used in the impact-
echo method, is also related to Poisson’s ratio and permits calculation of Young’s modulus.

Satisfactory results can be obtained for materials whose Poisson’s ratios lie within the approximate interval 0.14–0.38.
For lower and higher values, the partial derivatives of Poisson’s ratio with respect to the aforementioned factors are very
high, leading to results with high uncertainty. Within this interval the main source of uncertainty is the thickness
frequency, which is limited by the low resolution of the spectra. Although a higher resolution can be achieved simply by
increasing the recording time, large-amplitude natural frequency peaks will appear in the spectrum, possibly preventing
detection of the thickness frequency peak. The thickness frequency peak can be more accurately identified by computing
the multicross-spectral density of multiple signals detected in the impact-echo test.

The numerical results show that the thickness mode is highly excited for Poisson’s ratios within the suggested interval
(0.14–0.38). Experimental verification of the method is performed by testing concrete and methacrylate plates. Two
separate tests were carried out on each plate: the impact-echo test to measure the thickness frequency, and another
experiment to measure the velocity of Rayleigh waves. If two detectors were used, however, a single impact-echo test
would be sufficient to determine the elastic constants of an isotropic plate.
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